Experimental Evaluation of Sodium Silicate-Based Nanosilica against Chloride Effects in Offshore Concrete

نویسندگان

  • Kyoung-Min Kim
  • Hak-Young Kim
  • Young-Sun Heo
  • Sang-Jin Jung
چکیده

This study investigates the effect of a new pore filling material, named sodium silicate-based nanosilica (SS), on resisting the diffusion of the chloride ions. The proposed SS is chosen, mainly due to its smaller particle size, compared to the conventional ethyl silicate-based nanosilica. Each particle of SS is chemically treated to have the negative (-) charge on its surface. Four types of mixes with different amounts of partial replacement with fly ash and slag are prepared. Effect of water to binder ratios (0.35, 0.40, and 0.45) is also examined. Test results showed that the inclusion of SS was significantly beneficial for protecting the concrete from chloride attack. At a given strength, the SS inclusion in concrete was up to three times more effective than the control concrete without SS. It is believed that these excellent results are attributed to the small particle size and the chemical surface treatment of SS. In this study, experiments of compressive strength, hydration heat, accelerated neutralization, and sulfate erosion tests were also conducted to find the general effect of SS inclusion on the fundamental properties and durability of concrete.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of Pozzolanic Reaction in Nanosilica-Cement Blended Pastes Based on Solid-State Kinetic Models and 29Si MAS NMR

The incorporation of pozzolanic materials in concrete has many beneficial effects to enhance the mechanical properties of concrete. The calcium silicate hydrates in cement matrix of concrete increase by pozzolanic reaction of silicates and calcium hydroxide. The fine pozzolanic particles fill spaces between clinker grains, thereby resulting in a denser cement matrix and interfacial transition z...

متن کامل

Effect of Nanosilica on Mechanical and Microstructural Properties of Cement Mortar

Recently, nanomaterials (such as nanosilica) are receiving special attention because of their ability to improve the performance of concrete compared with traditional mineral admixtures. In this work, a number of specimens were prepared to study the behavior of cement mortar containing nanosilica. The cement replacement by nanosilica of 3% and 5% by weight of cement was used. The mechanical and...

متن کامل

Effect of Impressed Current on Bond Strength Between Steel Rebar and Concrete

The deterioration of bond strength between reinforcing steel and concrete as a result of impressed cathodic current with respect to the exposure time was investigated. A current in the magnitude of 3ma/ft2 (based on reinforcing rebar area) was used for a period of five years. Chemical analyses for sodium (Na+), potassium (K+) and chloride (Cl-) ions in concrete cylinders were performed as a fun...

متن کامل

Investigation of Mechanical Properties of Self Compacting Polymeric Concrete with Backpropagation Network

Acrylic polymer that is highly stable against chemicals and is a good choice when concrete is subject to chemical attack. In this study, self-compacting concrete (SCC) made using acrylic polymer, nanosilica and microsilica has been investigated. The results of experimental testing showed that the addition of microsilica and acrylic polymer decreased the tensile, compressive and bending strength...

متن کامل

Synthesis, Polymerization, and Assembly of Nanosilica Particles below the Isoelectric Point

The particle growth of silica below the isoelectric point plays a key role in oil well cements, production of silica gels and production of nanosilica by dissolving silicates. In this article, we study the particle growth of silica below the isoelectric point using olivine, a silicate mineral, and sodium silicate solutions as silica sources in acid, where the particle size, soluble silica conce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014